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FUND~ENTAL THEOREMS ON STABILITY OF A PROCESS 
IN A PRESCRIBED TIME INTERVAL* 

K.A. ABGARIAN 

The concept of stability of a process on a prescribed time interval was formulated 
in /l/. General theorems establishing the stability and instability conditions for 
the unperturbed motion (the trivial solution of the system of equations of perturb- 
ed motion) in a prescribed time interval were announced in /2/. Brief proofs of 
these theorems are presented below. 

1. The concept of stability in a prescribed time interval is introduced as follows /l/. 
Let oft) be some prescribed positive function and let a(&,) =o,;Ka" be the class of n X n 
matrices G (t)= {G,, G,, . . ., G,) over the complex number field, satisfying, on a prescribed in- 
terval A = It,, T), where T is a number exceeding f0 cr is oo, the conditions det G+ 0; let 
the Hermitian norm of the columns Gj(j = 1,2,...,n) coincide with o(t), i.e., (Gj,G,)'/a ZI o(t), 
tE A.. Assuming that the deviations of the perturbed process' parameters from those of the 
unperturbed process are repwesented by the vector-valued function 5 (f) (an nX1 column- 
matrix), we define the stability of a process in interval A. 

Definition. If in a prescribed class Kaa there exists a matrix G coinciding at the 
initial instant t = to with a prescribed constant matrix G, of class Kam, such that for a 
sufficiently small p>O the perturbation of the process whose initial value z0 = 5 (to) sat- 
isfies the condition 

tG,-'e,, G,-'r,,) \< pa (1.1) 

in the interval A = [t,, T) satisfies the condition 

(G-?r, G-'z) <pa (1.2) 

then the unperturbed process in stable in the prescribed interval A. Otherwise, it is un- 
stable. 

Together with this basic definition of stability in a prescribed time interval therehave 
also been formulated /l/ the concepts of stability uniform on A, stability on an unbounded 
interval f&m), asymptotic stability on an unbounded interval, etc. 

Note. This concept of stability in a prescribed time interval is, in some sense, a gen- 
eralization of the stability concepts introduced earlier by other authors. Thus, when 0 (t) = 
wnst our definition coincides with Kamenkov's definition /3/ of motion stability on a finite 
time interval. If we reckon that inequality (1.1) prescribes a domainofinitialperturbations, 
while inequality (1.2) prescribes a domain of admissible perturbations on interval A, then 
our definition of stability coincides with the concept of practical stability /4,5/. With an 
insignificant modification of our definition of stability we can get more complex concepts of 
stability on a finite interval, such asquasi-stability and contractive practical stability, 
asymptotic stability on a prescribed time interval in Krasovskii's sense /7/, etc. 

2. We consider dynamic systems whose perturbed motion is represented by 

ax/at = f (t, z, g), f (f, 0, 0) sz 0 (2.1) 

where f(t,x,g) is a vector-valued function satisfying the existence and uniqueness conditions 
for the solution of the Cauchy problem in domain I, X D, X D, (D, and D, are like opensets 
in the corresponding vector spaces, and I, C IO <a < 00)). We assume that the vector-valued 
function g in (2.1) is some known or unknown vector-valued function of time t and of the 
phase (state) vector x, bounded by some condition 

g (t) c n (6) c Dg (t E I,,) (2.2) 
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where n(t) is some domain of possible or admissible values of the perturbed forces, known or 
subject to definition. General theorems establishing the stability and instability conditions 
for the process (for the trivial solution of Eq. (2.1)) were announced in /2/. Below we 
briefly present the proofs of these theorems. 

As is well known, an arbitrary rectangular m X n matrix of rank r can be given as a 
product of two matrices B and C of dimensions mXr and r X n, respectively. The foll- 
owing lemmas hold. 

Lemma 2.1. In order that a Hermitian matrix (of order n) be representable as 

A :z R*R (2.3) 

where B is some, in general, rectangular m X n matrix, it is necessary and sufficient that 
it not have negative eigenvalues. 

Len-ma 2.2. Let A(t) be an nth-order Hermitian matrix admitting of expansion (2.3) on 
the interval to<<< T, where B is a square matrix of the same order n, and 

aup lR(t) I<m, det I B (t) I > a > 0, t E It,, T) 

Then the eigenvalues Pi(t) of matrix A are bounded from below by a positive constant on the 
interval [to, T). 

Lemma 2.3. Let A and B be Hermitian matrices related by 

A = HBH*,H:(h,,h,, . . .,h,,),hj*,hi=a’ (j=l,2,. . .,n) 

(H is a square matrix); let at least one of the following two conditions be fulfilled: a) 
hi*hj = 0 (i # j; i, j = 1, 2, . . ., n) or b) B is a diagonal matrix. Then 

Tr A = a2Tr B 

The lemma's proof follows from 

In the special case when B is the unit matrix, i.e., A = HH*, Tr A = na2. 

Lemma 2.4. Let A be a real diagonal matrix with diagonal elements pl,pz,..., p,, sat- 
isfying the condition 

piP~Trh=~~pj (i=1,2,...,n) (2.4) 
j=l 

Then the expansion 

n=RR* (2.5) 

holds, where R is an nth-order square matrix whose columns have the like Hermitian norm 

1/Rj*Rj=a2 (j=1,2,...,n) 

a=1/+Trh, rankR=rankA 

and, if A is a function of t, continuous on [t,, T) and 1 times differentiable (I ==1,2,...), 
then R(t) is, respectively, continuous and 1 times differentiable on [lo, T) . 

The matrix 
R=$fxV (2.7) 

where V is an arbitrary unitary matrix, satisfies (2.5). By Lemma 2.3 we have Tr A = na=. 

Allowing as well for (2.6), we obtain (2.5). Let us show that a unitary, and even orthogonal, 
matrix V does indeed exist such that the matrix R of form (2.7) satisfies (2.6). Relations 
(2.5)-(2.7) lead to the following equalities relative to the columns Vj of matrix V: 

vj, h-&i\& ( J Vj’O (2.8) 

Vi'Vi q 6ij = 
i,i=i (2.9) 
o,i#i 
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In an n-dimensional Euclidean space the Eq.CZ.7) describes a second-order cone. In addition 

which is a necessary and sufficient condition for the existence of an n-hedral corner with 
pairwise-orthogonal edges, inscribed in cone (2.8). Taking this into account, as the columns 

V, of matrix V we can take unit vectors directed along the edges of this n-hedral corner. 
Then the matrix R defined by (2.7) possesses properties (2.5) and (2.6). The last equality 
in (2.6) follows immediately from (2.7) by the nonsingul.arity of matrix V. It remains to 

prove the lemma's last assertion. Denoting 

we have 

We set up this system's functional determinant 

% 
a (qjjs W = det 

-q- 

2V& 

det av 3% 
= det 

j 
= detdiag(2V', V’) detdiag(Ao, En)+0 

-q, V’ 
b 

The latter is true because V, as an orthogonal matrix, is nonsingular aa matrix & also 
is nonsingular by virtue of (2.4). According to the theorem on the existence and uniqueness 
of implicit functions the matrix V, as also the matrix A, is continuous ana has a contin- 
uous dexivative in argument f in a neighborhood of the system V,,...,V,, constructed. 

Since a Hermitian matrix can be reduced to a real diagonal matrix by a unitary trans- 
formation, we state the following lemma on the expansion of a Hermitian matrix. 

Fundamental lemma. A positive-definite Hermitian matrix A whose eigenvalues ttlF PCs* 
_.., p,, satisfy the condition 

7l 

P&C pi (i=1,2,...,n) 
,=1 

can be represented as 

A-’ = HI-f*, ff = PI, 62,. . -, M 

ljkjiJ=a=/~TrA-', rankIf=rankd 

(2.10) 

(H is a square matrix), ma, if A (t) is continuous and continuously differentiable on b&T), 
then on this interval the matrix H(t) is continuous and continuously differentiable. 

3. Thus, we can examine the perturbed motion of the dynamic system represented by the 
vector Eq.(2.1). 

Theorem 3.1. (On stability). Let a positive-definite Hermitian form 

exist such that: 
V (t, 2) = z+A (t)r (3.1) 

1". A (f-J = (G,-‘)*Go-1 (G, is a prescribed constant matrix of class XaD); 

2" . f Tr A-’ (8) < o*(t), @E it., T); 

3“. dVldt<O for %'t~ It,,T) (here and later we assume that the derivative of function 
V with respect to t is taken relative to Eq.(2.1) ). 

[to, T). 
Then system (2.1) is stableon interval 

Proof. According to the fundamental lemma the matrix A in form V(t,x) can be represent- 
ed as A(b) = [ff-‘(t)l*H-l(t), where H(t) is a square matrix satisfying the conditions in (2.10), 
and, in accord with the theorem's condition 1", a(&,)= o (tJ = oO. The matrix 
a(~))~(~) belongs to class Kdot 

G (t) L= (o (t)/ 
and G (to) = Go. Let z“ (if be some solution of Eq.(2.1), 

satisfying the condition 
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On the strength of condition 3", y (t7 so 0)) < v (&I, 9 (P)) along this solution. Therefore, nl- 
so allowing for condition 2", we have 

02(t) (G-'(t)i(t), G-'(1)2(t)) = wlo v (t, x"(t))< V (to,i(to))< pa 

which proves the theorem. 

Theorem 3.2. (On instability). Let a positive-definite Hermitian form 

v (t$ z) = 9.4 @)s 

and an instant tI= it,, 2') exist such that: 

1". A (tO)=(Gg-l)*GO-l (G, is a prescribed constant matrix of class Ram); 

2”. pmi~(tl)>h2(t~) (p&n is the minimal eigenvalue of matrix A*A when t = tI); 

3". dV/dt > 0 for Vt E [to, t,l and Vx ED. 
Then system (2.1) is unstable on interval Ito, T). 

Proof. Let us assume, to the contrary,thatsystem (2.1) is stable under the fulfillment 
ofthetheorem's hypotheses, and, hence, that there exists a matrix G(t)= Km* such that all 
sol.utionsofthe system, satisfying the condition 

(G-r (&,)x (&I, G-' (&& Wf < P' (3.2) 

onthewhole interval f&s T), satisfy the condition 

(G-l (tfr (6, G-r fr)~ (0) Q Pz 

Let x'(f) be a solution of the system, satisfying the condition 

(G-l (t&r" (to), G-' (t&r" (to)) = pz 

(3.3) 

On the strength on the theorem's condition 1" we have v (to, so (to)) = P2' Let vmax Or) be the 
maximal eigenvalue of matrix G" @IF (hb The inequality vmax<2wa holds. Hence, keeping 
the theorem's condition 2" in mind, we find 

By virtue of the last relation we obtain 

which contradicts the stability condition. Hence, the original premise (on the system's stab- 

ility) is false and the system (2.1) is unstable. There the followingstrongertheoremholds: 

Theorem 3.3. (On instability). Let a positive-definite Hermitian form 

V (t, x) = x*A (b)x 

and an instant tl E ft,, T) exist such that: 

1". A (to) = (G@-‘)*G,,-’ (Go is a prescribed constant matrix of class K&O); 

2". f Tr A-l (tl) > o* (t,); 

3". Nidt > 0 for Vt F If,, &I and VZED. 
Then system f2.1) is unstable on interval It,, T). 

Proof. We show at first that all solutions of (2.11, satisfying the condition 

F' (b,, z 01)) = r* @,)A f&)s 6) < P' 

satisfy the condition 



On stability of a process in a time interval 303 

Let us assume, to the contrary, that there is a solution x"(t) not having such a property. 
Then by continuity an instant exists such that 

v (z, 4 (r)) = pa, v (t, z" (f)) > p2, Vt 6z It,, z) 

In particular, V(to, x”(to))>p2, but this contradicts the inequality 

which follows from the theorem's condition 3". Now we assume that in spite of the theorem's 
assertion there exists a matrix G(t) of class KAO, such that all solutions 2 (t) satisfying 
(3.2) satisfy (3.3) on l&T). We introduce into consideration the sets 

uG(t)= {x: (G-‘(t)~,G-~(~)x)~p~}, Urr(t) = (2: V (t, 2) Q p") 

According to the assumptions made (on the system's stability), V,(t,)C U,(t,), but this is 
impossible since by the theorem's condition 2" the set 

v, (tl) \ VH @I) n VG tk) 

is nonempty. Here we used the following lemma: let 

v, = {x : v, (t, 5) < p”}, u, = (5: v, (t, d < P") 

where V, and V, are positive-definite Hermitian forms with matrices Aland Al, respectiv- 
ely; if Tr Al-l > Tr A,+, then v1 \ u1 n u, is a nonempty set. 
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