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FUNDAMENTAL THEOREMS ON STABILITY OF i\ PROCESS
IN A PRESCRIBED TIME INTERVAL

K.A. ABGARIAN

The concept of stability of a process on a prescribed time interval was formulated
in /1/. General theorems establishing the stability and instability conditions for
the unperturbed motion (the trivial solution of the system of equations of perturb-
ed motion) in a prescribed time interval were announced in /2/. Brief proofs of
these theorems are presented below.

1. The concept of stability in a prescribed time interval is introduced as follows /1/.
Let @ (f) be some prescribed positive function and let o (f;) = 0y; Ka® be the class of n X n
matrices & {t}= (G, Gy - - .+ Gy) over the complex number field, satisfying, on a prescribed in-
terval A = [f;,, T), where T is a number exceeding #, or is oo, the conditions detG = 0; let
the Hermitian norm of the columns G;(j =1,2,..., n) coincide with @ (), i.e., (Gj, G = o (f),
t €2 A. Assuming that the deviations of the perturbed process' parameters from those of the
unperturbed process are represented by the vector-valued function =z # (an n X1 column~
matrix) , we define the stability of a process in interval A.

Definition. If in a prescribed class K,® there exists a matrix G coinciding at the
initial instant ¢ =1{, with a prescribed constant matrix &, of class K,® such that for a
sufficiently small p >0 the perturbation of the process whose initial value gz, = z(f,) sat-
isfies the condition

{Go7'20, Gy 7'z < p* (1.1)
in the interval A = [f,, ) satisfies the condition

(G722, G7z)  p? {(1.2)

then the unperturbed process in stable in the prescribed interval A. Otherwise, it is un-
stable,

Together with this basic definition of stability in a prescribed time interval there have
also been formulated /1/ the concepts of stability uniform on A, stability on an unbounded
interval [#,, o), asymptotic stability on an unbounded interval, etc.

Note. This concept of stability in a prescribed time interval is, in some sense, a gen-
eralization of the stability concepts introduced earlier by other authors. Thus, when w(l)=
const our definition coincides with Kamenkov's definition /3/ of motion stability on a finite
time intexval. If we reckon that inequality (l1.l) prescribes a domain of initial perturbations,
while inequality (1.2) prescribes a domain of admissible perturbations on interval A, then
our definition of stability coincides with the concept of practical stability /4,5/. With an
insignificant modification of our definition of stability we can get more complex concepts of
stability on a finite interval, such as guasi-stability and contractive practical stability,
asymptotic stability on a prescribed time interval in Krasovskii's sense /7/, etc.

2. We consider dynamic systems whose perturbed motion is represented by
de/dt = f (£, z, 8), (£, 0,0) =0 (2.1)

where f(¢, z, g is a vector-valued function satisfying the existence and uniqueness conditions
for the solution of the Cauchy problem in domain I, X D, X D, (P, and D, are like opensets
in the corresponding vector spaces, and [, C [0 <{f<{ )). We assume that the vector-valued
function g in (2.1) is some known or unknown vector-valued function of time £ and of the
phase (state) vector z, bounded by some condition

ED TR C Dy 1)) (2.2)
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where = (f) is some domain of possible or admissible values of the perturbed forces, known or
subject to definition. General theorems establishing the stability and instability conditions
for the process (for the trivial solution of Eq. (2.1)) were announced in /2/. Below we
briefly present the proofs of these theorems.

As is well known, an arbitrary rectangular m X rn matrix of rank r can be given as a
product of two matrices B and C of dimensions m X r and r X n, respectively. The foll-
owing lemmas hold.

Lemma 2.1. In orxder that a Hermitian matrix (of order n) be representable as
A == B*B (2.3)

where B is some, in general, rectangular m X n matrix, it is necessary and sufficient that
it not have negative eigenvalues.

Lemma 2.2. Let A(f) be an nth-order Hermitian matrix admitting of expansion (2.3) on
the interval {, <{f{<C T, where B is a square matrix of the same order n, and

sup | B () | << oo, det |B(®) | >a >0, t |ty T)

Then the eigenvalues pi (f) of matrix A4 are bounded from below by a positive constant on the
interval [, T).

Lemma 2.3. Let A4 and B be Hermitian matrices related by

A = HBH* H = (g, hyy . . ., b)), hi* by =02 (=1,2,...,n)
(H is a square matrix); let at least one of the following two conditions be fulfilled: a)
hi*h;j=0 (i i{,j=1,2,...,n) or b) B is a diagonal matrix. Then
TrA = o*Tr B

The lemma's proof follows from

n n n
Trd= 21 Z 21 hirbrkﬁjk

j=1k=1r=1

In the special case when B is the unit matrix, i.e., A = HH*, TrA = no®

Lemma 2.4. Let A be a real diagonal matrix with diagonal elements (i, My, . - -, By Sat—
isfying the condition
n
pE T A =—- Y (=12....n) (2.4)
i=1
Then the expansion
A = RR¥* (2.5)

holds, where R is an nth-order square matrix whose columns have the like Hermitian norm
VRFR;j=a* (j=1,2,...,n) (2.6)
a=V—1—TrA, rank R =rank A

and, if A is a function of £, continuous on [f, 7) and [ times differentiable (I = 1,2,...),
then R (f) is, respectively, continuous and ! times differentiable on lte, T)
The matrix
R=VAV (2.7)

where V is an arbitrary unitary matrix, satisfies (2.5). By Lemma 2.3 we have Tr A = nat.
Allowing as well for (2.6), we obtain (2.5). Let us show that a unitary, and even orthogonal,
matrix V does indeed exist such that the matrix R of form (2.7) satisfies (2.6). Relations
(2.5)— (2.7) lead to the following equalities relative to the columns V; of matrix V:

, 1 - 2.8)
v, <A——;—TrAEn>lj_~O (

, Li=j (2.9)
ViVj:E’U‘:{OY ik
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In an n-dimensional Euclidean space the Eq.(2.7) describes a second-order cone, In addition
1
Tr(A——-;-TrAEﬂ)EG

which is a necessary and sufficient condition for the existence of an r-hedral corner with
pairwise-orthogonal edges, inscribed in cone (2.8). Taking this into account, as the columns

V; of matrix V we can take unit vectors directed along the edges of this n-~hedral corner.
Then the matrix R defined by (2.7) possesses properties (2.5) and (2.6). The last equality
in {2.6) follows immediately from (2.7) by the nonsingularity of matrix Y. It remains to
prove the lemma's last assertion. Denoting

1 . 1
Ag=A ——TrAE, ==diag (by, Agy ... Ay, Ay=p— o TrA
we have

PuSVAY; =0, @u=VVi=8; (hi=1,2...,n)

We set up this system's functional determinant

09
L 2VAY
9 (350 Nyy) Wy ’ ) — i
dot——py—— = det| 5o | = det = det diag (2V7, V') det diag (Ag, Ep) %0
VI
av.

)

The latter is true because V, as an orthogonal matrix, is nonsingular and matrix A, also
is nonsingular by virtue of (2.4). According to the theorem on the existence and uniqueness
of implicit functions the matrix V, as also the matrix A, is continuous and has a contin-
uous derivative in argument ? in a neighborhood of the system V..., V, constructed.

Since a Hermitian matrix can be reduced to a real diagonal matrix by a unitary trans-
formation, we state the following lemma on the expansion of a Hermitian matrix.

Fundamental lemma. A positive-definite Hermitian matrix A whose eigenvalues py, Hgs
.+« Bpn satisfy the condition

i n
pigE~— Y p; (i=1,2,...,n)

can be represented as

A"V =HH*, H=(n, hy ..., hy) (2.10)
I h; 53=0=V%Tr.4‘1, rank H =rank 4

(H is a square matrix), and, if A () is continuous and continuously differentiable on I¢,, T),
then on this interval the matrix H (f) is continuous and continuously differentiable.

3. Thus, we can examine the perturbed motion of the dynamic system represented by the
vector Eg.(2.1).

Theorem 3.1. (On stability). Let a positive-definite Hermitian form

V( z) = z*A () (3.1)
exist such that:

1°. 4 (&) = (G )*G,™ (G, 1is a prescribed constant matrix of class Ka®);
2. L Tr A <o), VIE fo T)

3, dvidt <0 for Vielf,T) (here and later we assume that the derivative of function

[tVT)With respect to f is taken relative to Eq.(2.1)). Then system (2.1) is stable on interval
0 hd

Proof. According to the fundamental lemma the matrix A in form V (¢, *} canbe represent~
ed as A(f) = [H ()1*H™ (1), where H(f) is a square matrix satisfying the conditions in (2.10) '
and, in accord with the theorem's condition 1°, 0 (fy)) = @ () = ©,. The matrix G (f) = (o @Y/
o(f)H(:) belongs to class K»®, and G{f) =G, Let 2 {f) be some solution of Eq.{(2.1),
satisfying the condition
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(G {£)2°(£0),G 7" (F)2"(fy)) < p?

On the strength of condition 3°, V(5 2° () <V (&, 2° (1) along this solution. Therefore, al-
so allowing for condition 2°, we have

(GH1)2° (1), 67 (1)2° (V) =~k V (£, 2° (1)) <V (tor 2° (t0)) < P

% (2}
which proves the theorem.
Theorem 3.2. (On instability). Let a positive-definite Hermitian form
Vit z) =24 ()=
and an instant ¢ & lf, 7) exist such that:
1°0 A {f)=(Go™Y*G," 1 (G, is a prescribed constant matrix of class K,9);
2°, pmia (1) > 20% (f;) (Pmin is the minimal eigenvalue of matrix A*4 when ¢ = f);

3, dvidt >0 for Vielty, 4] and Ve D.
Then system (2.1) is unstable on interval [&, T).

Proof. Let us assume, to the contrary, that system (2.1) is stable under the fulfillment
of the theorem's hypotheses, and, hence, that there exists a matrix G ()& K9, such that all
golutions of the system, satisfying the condition

(G (to)x (fo)y G (Go)z (5)) < PP 3.2)
on the whole interval [f;, T}, satisfy the condition
(G Bz (1), G {Dz () < p? {3.3)
Let z°{f) be a solution of the system, satisfying the condition
(G™ (10)2° (L), G™* (Lo)2” (£y)) = p*
On the strength on the theorem's condition 1° we have ¥V (fy, 2° (f)) = 0% Let wmax (f}) be the

maximal eigenvalue of matrix G* (§)G (f)). The inequality  wpmux << 20% holds. Hence, keeping
the theorem's condition 2° in mind, we find

Bmin (fx) > Vmax (tl)

By virtue of the last relation we obtain

> > >

which contradicts the stability condition. BHence, the original premise {(on the system's stab-
ility) is false and the system (2.1) is unstable. There the following stronger theoremholds:

Theorem 3.3. (On instability). Let a positive-definite Hermitian form
Vi, ) = 2*4 (H=z
and an instant § & lt,, I) exist such that:
1°. A () = (Ga™M)*G,? (Gy is a prescribed constant matrix of class K,9);

20 - Te A7 (0) > P ()

3, dVidi >0 for Vielt, il and VzeED.
Then system (2.1) is unstable on interval i, T).

Proof. We show at first that all solutions of (2.1), satisfying the condition
V(ty, z (1) = =* (04 (B (8) < p?

satisfy the condition
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V (to, 2 (fo)) = 2* (f0)4 (£0)z (f0) < p*

Let us assume, to the contrary, that there is a solution 2°(f) net having such a property.
Then by continuity an instant exists such that

Vig,z @) =p%, V(@0 > Vil )
In particular, V (£, z° (&)) > p?, but this contradicts the inequality

Vit 2° () < V (v, 2° (1)) = p*

which follows from the theorem's condition 3°. Now we assume that in spite of the theorem's
assertion there exists a matrix G (f) of class Ka?, such that all solutions z (f) satisfying
(3.2) satisfy (3.3) on [f, T). We introduce into consideration the sets

Ug () = {=: (67 ()2, G ())2) <p*}, U (8) = {=: V (¢, 2) < p?)

According to the assumptions made (on the system's stability), Ug () C Ug (), but this is
impossible since by the theorem's condition 2° the set

U () \ Ur () N Us (&
is nonempty. Here we used the following lemma: let
Ul = {x : Vl (t7 .’t) < pz}v Uﬂ = {.’l?: VB (tv Z) < pz}

where V; and V, are positive-definite Hermitian forms with matrices A4, and A,, respectiv-
ely; if TrA; ' >TrA,", then U, \ U, ) U, is a nonempty set.
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